Partially supervised clustering for image segmentation
نویسندگان
چکیده
All clustering algorithms process unlabeled data and, consequently, suffer from two problems: (P1) choosing and validating the correct number of clusters; and (P2) insuring that algorithmic labels correspond to meaningful physical labels. Clustering algorithms such as hard and fuzzy c-Means, based on optimizing sums of squared errors objective functions, suffer from a third problem: (P3) a tendency to recommend solutions that equalize cluster populations. The semi-supervised c-Means algorithms introduced in this paper attempt to solve these three problems for problem domains where a few data from each class can be labeled. Segmentation of magnetic resonance images is a problem of this type, and we use it to illustrate the new algorithm. Our examples show that the semi-supervised approach provides MRI segmentations that are superior to ordinary fuzzy c-Means and to the crisp k-nearest neighbor rule and further, that the new method ameliorates (P1)-(P3).
منابع مشابه
Image Segmentation: Type–2 Fuzzy Possibilistic C-Mean Clustering Approach
Image segmentation is an essential issue in image description and classification. Currently, in many real applications, segmentation is still mainly manual or strongly supervised by a human expert, which makes it irreproducible and deteriorating. Moreover, there are many uncertainties and vagueness in images, which crisp clustering and even Type-1 fuzzy clustering could not handle. Hence, Type-...
متن کاملHigh Performance Implementation of Fuzzy C-Means and Watershed Algorithms for MRI Segmentation
Image segmentation is one of the most common steps in digital image processing. The area many image segmentation algorithms (e.g., thresholding, edge detection, and region growing) employed for classifying a digital image into different segments. In this connection, finding a suitable algorithm for medical image segmentation is a challenging task due to mainly the noise, low contrast, and steep...
متن کاملRobust Method for E-Maximization and Hierarchical Clustering of Image Classification
We developed a new semi-supervised EM-like algorithm that is given the set of objects present in eachtraining image, but does not know which regions correspond to which objects. We have tested thealgorithm on a dataset of 860 hand-labeled color images using only color and texture features, and theresults show that our EM variant is able to break the symmetry in the initial solution. We compared...
متن کاملHigh Performance Implementation of Fuzzy C-Means and Watershed Algorithms for MRI Segmentation
Image segmentation is one of the most common steps in digital image processing. The area many image segmentation algorithms (e.g., thresholding, edge detection, and region growing) employed for classifying a digital image into different segments. In this connection, finding a suitable algorithm for medical image segmentation is a challenging task due to mainly the noise, low contrast, and steep...
متن کاملCluster-Based Image Segmentation Using Fuzzy Markov Random Field
Image segmentation is an important task in image processing and computer vision which attract many researchers attention. There are a couple of information sets pixels in an image: statistical and structural information which refer to the feature value of pixel data and local correlation of pixel data, respectively. Markov random field (MRF) is a tool for modeling statistical and structural inf...
متن کاملLarge-Margin Metric Learning for Partitioning Problems
In this paper, we consider unsupervised partitioning problems, such as clustering, image segmentation, video segmentation and other change-point detection problems. We focus on partitioning problems based explicitly or implicitly on the minimization of Euclidean distortions, which include mean-based change-point detection, K-means, spectral clustering and normalized cuts. Our main goal is to le...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Pattern Recognition
دوره 29 شماره
صفحات -
تاریخ انتشار 1996